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Minkowski-Space and Lorentz-Group

Definition 1 Minkowski space 1s the four-
dimensional, real, affine space A* over R*, endowed
with a symmetric, non-degenerate, bilinear form
g of signature (+,—, —,—) = (1,3). We write
M* = (A%, g).

Definition 2 The (homogeneous) Lorentz group is
the linear group (subgroup of of GL(4,R)) of isome-
tries of M*, also called O(1,3).

As topological space O(1,3) decomposes into four
connected components. Here +/— stands for positi-
ve/negative determinant, T / | for time-orientation
preserving /reversing:

0(1,3) =0,(1,3) U 0}(1,3) UO!(1,3) U 0(1,3)
SO(1,3)

Of these four components only 01(1,3) is a sub-
group, called the group of proper, orthochronous Lor-
entz transformations. Elementwise composition with
space/time reflections gives 07 (1,3)/0%(1,3).
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The Poincaré Group

For any group G C GL(n,R), there is a corresponding
inhomogeneous group |G, given by the semi-direct
product

IG={(a,A)|aeR", AecG}
where
(G,A)(GI,A,) — ((1—|—A ) (1/, AA’)

It can again be thought of as subgroup of GL(n+1, R)
via the embedding

@A) () ‘/’i)

For G = O(1,3) we get the Poincaré group P := IG.
For G = 01(1,3) we set IG = PL etc.
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Polar Decomposition 1

Theorem 3 Fvery element of GL(n,R) s the unique
product (depending on choice of order) of a symme-
tric positive-definite with an orthogonal matriz.

Applied to 01(1 3) C GL(4,R) this leads to the decom-
position of any proper orthochronous Lorentz transfor-
mation L into a boost B and a proper spatial rotation

R. Let .
_ (Y @
L= (F m)

be a Lorentz transformation. This is equivalent to
=2 2 o - b = o ot
a=vy"—1, yb=M-d, M-M'=1T+b®Db

and correspondingly for a < b, M & M.

Note: polar decomposing an element in G C GL(n,R)
does not generally lead to factors in G. But this is true

for O(p,q) and U(p,q).
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Polar Decomposition 2

Now, given L € Ol Then

L=B-R
with
= Seb! = |z boat
b 1+52 0 M -5
where
EV(B) = (y+ VY -1, vy—v¥y*—1,1,1) >0
b gt
D = M—22% ¢ 5003
1+vy
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Polar Decomposition 3

Re-express L in terms of parameters [§ :=v/c and D.

Have
y=1/y/1-p2 b=y d=yD'-§

so that

The polar decomposition defines a topological map
from the group onto the cartesian product of its factor-
images. Here this leads to the following topological
equivalence:

0'(1,3) = B1(0) x SO(3) = R x RP?

boosts rotations
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Composition of Boosts 1

Polar decompose the composition of two boosts:

B(B2) o B(B1) = B(B2xB1) o R(TIB2, B1])

Here * denotes the operation of relativistic velocity
addition:

3 ol 131
T+ 61 B2

T[B,, B1] € SO(3) is the so called Thomas rotation in
the 31 — 32 plane with angle ¢, where

(T+v+v1+7v2)?

A+ 0ty +72)

COS (P =

and o L
Y = v(B2*B1) =viva(1 + B1- B2)

Using v1 = cosh 0 etc., this is just the ‘law of cosines’
for ‘triangles’ on the 4-velocity hyperbola g(u,u) = 1.
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Composition of Boosts 2

The general law for composing Lorentz transformations
is now as follows:

L(B2, D2)oL(B1,D1) = L(B24Dy-B1, T[B2, Dy-f1]-D2-Dy)

Compare with (homogeneous) Galilei transformations:
G(v2,D2) o G(v1,D1) = L(V; + D3 - Vi, D2 - Dy)

where we have the group isomorphism

Gall = R3 % SO(3)
" boosts N

Remark 4 Boosts form an abelian normal subgroup
of Gall. Hence Gall 18 not semi-stmple. In contrast,

01(1 3) has no non-trivial normal subgroup (see be-
low), so it is even simple. This may be seen as due
to the Thomas rotation.
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Algebraic Structure of Velocity Space 1

Velocity space (‘E—space’) is the open ball of radius 1
in R3. The % operation makes it a groupoid. There is a
unique neutral element 0, the unit, and each element
B has a unique (left and right) inverse —B:

0xp=Bx0=H, PBx(—B)=(-PB)xp=0

The x operation is neither commutative nor associative,
e.g.

«B1 = TIB2, B1] - (B1* B2)

—

* (B2x B1) = (B3 B2) x TIP3,B2] - B

L TRl
w N
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Algebraic Structure of Velocity Space 2

However, equations such as

can still be solved uniquely for 61 (given 62,3) or Ez
(given f313):

This makes the groupoid a quasi group. Together with
the existence of a unit we get the structure of a loop.

This algebraic structure is closely related to hyperbolic
geometry (calculus of geodesic segments).
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The Universal Cover Group

SL(2,C) = {(2 2) ‘ a,b,c,d e G ad—bc=1}

The polar-decomposition map yields the topological
homeomorphism

SL(2,C) =R> x SU(2)=R?> x S3

Let {o"} := {1,0} and {o"} := {1,—0}. There is a
real-analytic 2-1 group homomorphism 7t: SL(2,C) —
0! (1,3), given by

(A% = I Trace(6*Ac,AT)

which is essentially the double-cover map S® — RP3.
A local (no global!) inverse is

A =40, 145/ /det(0,155)
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For example

Agi(a,) = =+ exp(—%ocﬁ- G)

+ exp(%&amh_1 (B) 1 -0)

R
rapidity

&
(o]

2

N

G
||

The corresponding Inhomogeneous group (double cover
of proper orthochronous Poincare group) is now given
by the semi direct product R* x,. SL(2C)

PL={(a,A) JaeR" A €SL(2,C)}

where

(a,A)(a’,A") = (a+m(A)-a’, AAT)
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Action on ‘Observer Sky’

|dentify the space of past null-rays emanating from
some event with two-sphere (cross section through
past null-cone), and that with Riemann sphere CU{oc}
coordinatized by z:

. . k] °k2
k=(=1K) with =1, z:= 1:1(3
Then L € O! acts on observer sky via
dz —
Z —bzz _|_Ca . wWhere A = <2 ?1) e (L)

This is a Mobius transformation with

d —\ (0 1\ [a db\/0 1\
—b a/) \-1 0/\c d)\—-1 0
These form the group of conformal transformations of

S? (the observer sky) which acts 3-fold transitive.
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Stabilizers of Light Rays

An interesting subgroup of Md&bius transformations is
that which fixes (stabilizes) a light ray, say z = oo:

—1
Stab(oo) = {A(S,d) _ <§_15 g) ‘ deC* 5e @}

Hence

A(5,d)-A(8',d)) =A(d+ d?’, dd")

which identifies it as a semi-direct product C x C*.
Boosts along and rotations about the 3-axis are para-
metrized by the modulus and phase of d respectively.
For |d| = 1 get subgroup that fixes the light ray point-
wise. It is obviously isomorphic to the double cover
of E; = R? x SO(2), that classifies helicity states of
massless fields. For d = 1 get subgroup isomorphic to
R?, corresponding to certain null rotations:
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CS ?)zexp(—%éﬁ’-()"), where n = (i, 1,0)

General null rotations:

exp(—%\_/’-c_r'), with v.-v=0,v e C

In (Q-)Field Theory, null rotations (i.e. the translational
part of E(2)) are represented trivially in order to get
finite-dimensional ‘internal’ state spaces. But they do
play a rGle in some version of string theory.
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Some Facts on s((2,C)

Theorem 5 sl(2,C) is simple
Let sl(2,C) be spanned by

no_ 1 0 o _ 0 1 o _ 0 0
- \0 —T T \0 0 T \1 0
= lef,e_] =h [h,ey] = +2ey
If X=ae, +be_+chel=ideal, then
ley, lex, X]] = —2be, le_,le_, X]] = —2ae_

This shows: if any of a,b,c # 0 then I =s((2,C).

Theorem 6 sl(2,C) has no non-trivial finite dimen-
stonal unitary representations.

Suppose T : sl(2,C) — u(n), T(X) =: X were such a
representation. Then [h, €] = £26., so that

Trace(”e\i) — %Trace(/elr[ﬁ”e\r —¢.h) =0

= €, =0= e, €ker(T) = ker(T) =sl(2,C)
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Finite Dim. Representations of SL(2,C)

Theorem 7 Representations of a connected and
simply-connected Lie group are in bijective corre-
spondence to representations of its Lie algebra. This
correspondence respects all reducibility properties
and equivalences.

Theorem 8 (Weyl’s ‘unitarisation trick’)
Representations of a real Lie algebra L on a
complex vector space are in bijective correspondence
to complex-linear representations of its complexifica-
tion LOC (where ® is over R). This correspondence
respects all reducibility properties and equivalences,
but it does not respect unitarity.

Have
s[(2,C)C=(sul2)®C) @ (su(2) ® C)

Hence the complex, finite-dimensional, irreducible re-
presentations of SL(2,C) are D®9), where (p, q) are
independent and € N/2. None of them is unitary. All
representations of SL(2, C) are fully reducible.
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Finite Dim. Representations of SL(2,C)

‘Left’ and ‘right’ complexified SU(2) are complex con-
jugate to each other. Hence, if V denote the symme-
trized tensor product, have

DPY(B, &) = APV(B, &) @ AY(B, &)
so that

/
X1+ Xp X Xp\ wZiZo (aV1. . aVa
\yy]/...yé ; (AZ1 AZp) WV]’---VC’I (AY]’ A )

The Clebsch-Gordan Series for SL(2,C) is

p+p’ q+q’

D®ad) & D(D’,q') _ @ @ D(™s)

r=p—p’l  s=lq—q’|
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The Pauli Lemmas

The Pauli-Index i1s a map

m:DPY 5 (=1, (=1)29) € Z, x Zy

It satisfies

I ! 7

(DP9 @ DP)) = g(DPA) . gDPa)

which says, that it is a homomorphism of semigroups.

According to its representation, we can associate a
Pauli-Index to any spinor. For example, a tensor of
odd/even degree has Pl (—, —)/(+,+).

Now consider the most general linear equation for
integer spin (free fields)

> Wi =) Y
D ¥ = ) Y
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These are invariant under

o - Yinx) = Wi (=)
. W(_)_)(X) = —W(__)(—X)

)

Now consider any current, that is a polynomial in the
fields and their derivatives:

J-o) = Z‘i’(_,_) + ¥4 Yoo+ Yo ¥
¥ 0¥+

Then
(©])(x) = —J(—x)

Lemma 9 (Pauli) Charges of conserved currents
cannot be definite in any SL(2,C) invariant, free
theory of integer spin fields.

And (almost) likewise

Lemma 10 (Pauli) Charges of conserved 2nd rank
tensors (e.g. energy momentum), bilinear in fields,
cannot be definite in any SL(2,C) invariant, free
theory of half-integer spin fields.
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Representations of I51 on Fields

Let V be a representation space for _D(p’q) and F the
space of fields W : R* — V. Then Pl acts on F as
follows, where g = (a, A):

(U(g)¥)(x) = DPY(A) - ¥(n(AT") - (x — a))

The Fourier transformed version of this is

~

(U(g)¥)(p) = exp(ip - a) DPV(A) - W(m(A) - p)

showing that irreducible subspaces must consist of
‘functions’ W with support contained on SL(2,C)-
orbits in momentum space, which are just the hyper-
surfaces p - p = m? plus some p° < 0 condition. In
spacetime, the first reads:

(O+m?)¥Y(x)=0
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m? # 0

SL(2,C) Orbits in Momentum Space

Po

m2<0

m2>0

23
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SL(2,C) Orbits in Momentum Space: m? =0

The one-point orbit p = 0 corre-
sponds to a representation where all
space-time translations are trivially re-
presented and DP9 s reproduced.
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Wigner’s Trick

Choose a reference point p, on orbit @ and for each
p € O an A, € SL(2,C), so that m(A,) - p. = Pp.
Define Wigner Fields by

~ ~

By(p) = DPI(A;T) - (p)

Then
(U(A)bw)(p) = DPY(W(n(A™)-p, A))-¥((A™)-p)
where (‘Wigner Rotation')

W(p,A) = A—(‘A),p A - A, € Stab(p.)

This reduces the problem of classifying unitary irreduci-
ble representations of PT+ to that of such a classification
of Stab(p.). Have

(SU(2) for p, timelike
Stab(ps) = ¢ E(2) for p. lightlike
| SL(2,R) for p, spacelike
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A Unifying Viewpoint

All Poincaré invariant linear wave equations in phy-
sics, like Klein Gordon, Weyl, Dirac, Maxwell, Rarita-
Schwinger, Pauli-Fierz, Bargmann-Schwinger, etc. are
projection conditions for the fields to live in irreducible
subspaces for 131 (or discrete extensions thereof).

Next to (O + m?*)¥ = 0 (‘momentum irreducibili-
ty') this requires the projection condition for ‘spin-
irreducibility’ on the Wigner fields. Let P be the pro-
jector onto an D(p’q)‘smb(p*) — irreducible subspace of

V. Then the wave equation in momentum space reads

Translated back to W and then back to W this leads to
all the familiar wave equations - and many more !
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Notes on Simultaneity: Uniqueness

Definition 11 A simultaneity structure on spacetime
M is an equivalence relation on (i.e. a partition of)
M, such that a physical observer intersects an equi-
valence class exactly at one point.

This gives rise to zillions of such structures on any
spacetime. Physically, there is no more to require. But it
Is interesting to know whether there are such structures
that respect the automorphism group Aut(M) of M or
at least the subgroup Auty fixing a structure X (e.g.
a single observer, or a field of observers).

Definition 12 A fully/restricted invariant simulta-
neity structure s a simultaneity structure that is

Aut(M) /Autx (M) invariant. In the latter case one
speaks of stmultaneity relative to X.

Theorem 13 For Aut = IGall standard simulta-
neity 1s the unique fully tnvariant simultaneity. For
Aut = H_OT1 no such fully tnvariant simultaneity
erits. If X = “nertial observer field’, then Einstein

simultaneity is the unique restricted simultaneity re-
lative to X.
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Notes on Simultaneity
— Uniqueness —

The group theoretic origin of such different behaviour
is the following

Theorem 14 Let G be a group with transitive ac-
tion on a set S. Let Stab(p) C G be the stabi-
lizer subgroup for p € S (due to transitivity, all
stabilizer subgroups are conjugate). Then S admits
a G-invariant equivalence relation R C S x S (i.e.
(p,q) € R & (gp,gq) € R) iff Stab(p) is not ma-
zimal, that is, iff Stab(p) is properly contained in a
proper subgroup H of G: Stab(p) C HC G.

For the action of the inhomogeneous Galilei and Lor-
entz groups on Minkowski space, their stabilizers are
the corresponding homogeneous groups. The homoge-
neous Lorentz group is maximal in the inhomogeneous
one. However, the homogeneous Galilei group is proper-
ly contained in its semi-direct product with the spatial
translations, which in turn is properly contained in 1Gal.
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Notes on Simultaneity
— Non-Inertial Observers and Curvature —

Let K be a timelike Killing field on spacetime M*. Set
g(K,K) =exp(2¢) and define

A, =K, exp(—2¢)

This defines a connection on M, considered as principal
R (‘time’) bundle over ‘space’ S = M/orbits(K).

Remark 15 FEinstein synchronisation along a curve
Y in space S 1s equivalent to parallel transportation
with respect to the connection A.

Holonomy for the connection A is directly related to the

Sagnac effect. The curvature F = dA is proportional
to the vorticity of K.

The spatial metric h of S follows from

g=exp(2)AR®A —h
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Notes on Simultaneity
— Non-Inertial Observers and Curvature —

The Riemannian curvature of (S,h) and the bundle
curvature F = dA are intimately related, e.g. through
the following

Theorem 16 Let RB) and A be the Ricci scalar and
Laplacian of (S,h). Then the spatial curvature of S
and the ‘time curvature’ F are related by the Kaluza-
Klein identity:

R = 2(A@ + [IVolfh) — 3 exp(20) [[FIl;
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Derivations of the Poincaré Group

Usual inputs in derivations are

e Principle of relativity
e Constancy of the speed of light
e Homogeneity and isotropy of space

e Various regularity assumptions:

— continuity

— differentiability

— bijectivity

— sometimes linearity straightaway
e Reciprocity properties

e Causality properties

e Often hidden assumptions, e.g. concerning space
reflections
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Derivation of the Poincaré Group

Recall the strongest statement concerning euclidean
Isometries:

Theorem 17 (Beckman & Quarles 1953)
Consider euclidean space R", where n > 2.
Let v > 0 be some real number and f : R™ — R" a

map satisfying
x—yl=71 = |If(x) - fly)] =

Then f is a euclidean motion, i.e. f € E(3).

Note that no assumption concerning continuity or bi-
jectivity of f was made.

Is there an analogous theorem for Minkowski spaces ?
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Derivation of the Poincaré Group
— Causality Properties —

Theorem 18 (Alexandrov 1950, Zeeman 1964)
Let f: M™ — M", n > 3, be a bijection so that

either |Ix —yllg = 0 & [[f(x) =f(ylllg = 0
or |x—ylg > 0 & [[fx)=fy)llyg > O

then f 1s the composition of a Poincaré transforma-
tion with a constant dilatation x — Ax, A € R,.

There are various generalizations by Alexandrov.
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Derivation of the Poincaré Group
— Relativity Principle —

We ask: what is the most general group (why a group ?)
of maps of space-time transformations, compatible
with the principle of relativity (PoR)?

1 In particular, we take the PoR to mean that the
maps should be automorphisms of the space-time
structure.

2 The space-time structure consists of

2.1 a fixed set of events; hence the maps must be

bijections

2.2 an affine structure; e.g. derived from the law of
inertia

2.3 homogeneity of space and time and isotropy of
space

2.1 and 2.2 imply that transformations must form a
subgroup of Aff(4,R) = R* x GL(4,R) (no continuity
assumption!) . The homogeneity part of 2.3 implies
that the subgroup contain all translations, hence it
must be of the form R* x G. So we seek G C GL(4, R).
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Derivation of the Poincaré Group
— Relativity Principle —

The isotropy part of 2.3 implies that G contains a
copy SO(3), which ensures isotropy in one reference
system. Isotropy in other system is then expressed by
the conjugate subgroups.

3 Concerning boosts we make the following further
assumptions:

3.1 Boost transformations can be faithfully parame-

—

trized by v € B.(0), where ¢c € R, U {oo}.

— —

3.2 The map @ : B.(0) — B.(0), defined by

Is continuous.
3.3 Isotropy of space is taken to mean that

R(D)-B(¥)-R(D™) = B(D -¥)
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Derivation of the Poincaré Group
— Relativity Principle —

Theorem 19

(Ignatowsky 1910, Frank & Rothe 1911,
Berzi & Gorini 1968, ...)

Gwen the assumptions stated, the homogeneous
group G s either the Galilei group, or the Lorentz
group for some finite upper-bound velocity c.

No continuity assuption was made in deriving linearity.
But such an assumption was made for ¢ in order to
derive @ (V) = —v (Berzi-Gorini's contribution). Note
however that the inversion map is continuous for topo-
logical groups, so that continuity of ¢ is guaranteed if
V is a continuous chart.
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Rigid Motion

The notion of perfect rigidity (of a physical body) is
incompatible with a finite upper bound for all physical
signal velocities. But this does not mean that we cannot
rigidly move a body, by acting on each of its points
with a suitable (point varying) force.

Definition 20 (Born 1909) A body moves locally ri-
gid, if its local rest-frame geometry is unchanging in
the course of its motion.

Mathematically, a motion is described by a timelike
vector field X. According to Born, X generates a rigid
motion, iff

Lx(P1g) =Pi(Lxg) =0

where P is the local projection perpendicular to X.
Hence, for n = X/||X||4

(62 — ) (85 —n°ng)(VaXp + VpXa) = 0

This is clearly implied by, but strictly weaker than, the
condition for X to be Killing.
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Rigid Motion
— Rotational Motions —

Remark 21 X generates a rigid motion iff it is free
of shear and expansion.

An interesting task is to classify all proper rigid moti-
ons, i.e. those which are not isometries.

Theorem 22 (Noether & Herglotz, Part 1) There
are no proper rotational rigid motions in Minkowsk:
space.

The proof is surprisingly difficult.

Hence you cannot set a body into rotation without
deforming it. This is in contrast to translatory motions.
You can boost a body rigidly, if you push/accelerate
the trailing end harder than you draw/accelerate the
leading end (view the orbits of the boost Killing field).
If you apply the same forces/accelerations to both
ends, the body eventually breaks.

It remains the task to classify all proper non-rotational
rigid motions. There are many!
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Rigid Motion
— Irrotational Motions —

Take a single timelike curve vy and draw through each
of its points the perpendicular hypersurface. Now draw
all timelike lines which intersect these hyperplanes per-
pendicularly. (This works in a tubular neighbourhood of
v where no two hyperplanes intersect.) These flow lines

clearly defines a rigid motion, the so called hyperplane
motions.

Theorem 23 (Noether & Herglotz, Part 2) Any
wrrotational proper rigid motion in Minkowsk: space
1s a hyperplane motion.

The proof is fairly easy.
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